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A new technique is described for observing scattered particles in a scattering experiment. This involves a 
measurement of the correlated counting rates of two detectors and is based on an idea proposed by Hanbury-
Brown and Twiss for astronomical observations. With this technique it is possible, for example, to explicitly 
measure the phase of a scattering amplitude. 

I. INTRODUCTION 

MUCH of the understanding of phenomena on a 
microscopic scale is derived from an analysis of 

scattering experiments. In most of these, however, the 
wave properties of matter play little or no role. The 
elaborate techniques of classical optics, capable in 
principle of providing useful information, have received 
little attention for x-ray and particle beams. This is 
not related to the well-known fundamental limitations 
on measurements of fields at different space-time points; 
practical experimental methods are far from achieving 
these limits. It is, of course, the very short de Broglie 
wavelength of most particle beams which has prevented 
straightforward application of conventional interfer-
ometric techniques of making correlated space-time 
measurements. For the same reason the development of 
extended coherent sources (other than radio frequency 
and optical masers) has been slow. 

We shall show that both of these difficulties associ
ated with very short de Broglie wavelengths may, for a 
class of interesting experiments, be avoided by a tech
nique for measuring intensity correlations at different 
space-time points. The fact that such measurements are 
feasible and that they provide useful geometrical in
formation was pointed out in a remarkable paper by 
Hanbury-Brown and Twiss.1-2 They showed that ob
servation of the intensity correlations of light (or radio 
waves) from a star in separated receivers could be used 
in place of the amplitude correlations of the classical 
Michelson interferometric method to determine stellar 
diameters. The technique is a passive one, utilizing the 
radiation from a spontaneously radiating incoherent 
source. The principal virtue of the method is that it 
completely obviates the necessity for maintaining pre
cise phase coherence between the two detectors. The 
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!R. Hanbury-Brown and R. Q. Twiss, Phil. Mag. 45, 663 
(1954); Proc. Roy. Soc. (London) 242A, 300 (1957); 243A, 291 
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2 E . M. Purcell, Nature 178, 1449 (1956). 

most serious drawback to their technique is the require
ment of rather intense illumination of the receivers. 
For this reason, and probably also because of rather 
widespread misunderstanding of the principles involved, 
the range of applications was limited. 

We shall discuss here an extension of the Brown-
Twiss idea to a new class of problems. The intensity 
difficulties are circumvented in our application by 
dealing with irradiated targets rather than with natural 
emitters. (This is not feasible for the case considered by 
Brown and Twiss.) Furthermore and most important, 
their requirement of incoherence of the radiation from 
the target will be shown to be unnecessary. [This does 
not imply, however, a need for the source (or sources) 
which illuminate the target to be coherent, as we shall 
see.] The essentially classical wave interference analysis 
of Brown and Twiss will be replaced by a quantum 
mechanical description of particle scattering. There are 
two reasons for doing this: first, even when the classical 
picture is valid (as it is for intense electromagnetic 
radiation), the quantum-mechanical treatment is simpler 
and completely unambiguous; and second, the same 
techniques apply to the scattering of particles obeying 
Fermi-Dirac statistics for which no classical wave 
theory exists. 

The possibility of applying interferometry to micro
scopic systems is an exciting one. We suggest that one 
of the more important applications of this new technique 
will be to a solution of the so-called phase problem in 
the analysis of crystalline and molecular structure by 
x-ray scattering. Our treatment of the theory will be 
quite general, but we shall discuss x-ray scattering in 
the greatest detail. 

The theoretical basis for the technique being pro
posed will be briefly described in Sec. I I ; the general 
form of the intensity correlation for an oversimplified 
situation is given and its relevance for the phase prob
lem is indicated. The remainder of the paper is devoted 
to obtaining again the results of Sec. I I using real 
sources and detectors so that counting rates and back
grounds may be evaluated. The kinematics of the ele-
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mentary scattering interaction is described in Sec. I l l 
with attention to the construction of wave packets for 
the beam particles. The characteristics of the detectors 
are considered in Sec. IV. In Sec. V the theory of the 
intensity correlation is developed in detail. The par
ticularly interesting case of intensity correlations when 
the particles scattered by the elementary scatterers in 
the target are coherent is discussed in Sec. VI. This is 
the intensity counterpart of the usual x-ray diffraction 
experiment and is of greatest importance for the phase 
problem. In Sec. VII an estimate is made of counting 
rates and backgrounds. Finally, in Sec. VIII the par
ticular problems posed by a crystalline target are 
analyzed. 

II. GENERAL DESCRIPTION OF INTENSITY 
CORRELATION EXPERIMENTS 

In a conventional scattering experiment a source S 
of beam particles is used to irradiate a target T, as in 
Fig. 1. Those beam particles scattered through some 
angle corresponding to a momentum transfer Ak are 
detected by a detector D. From the counting rate, 
source intensity and geometry, the differential scatter
ing cross section <r(Ak) may be determined. In terms 
of the scattering amplitude ^(A^), the cross section is 
given by 

<r(Ak)=\$(Ak)\\ (2.1) 

It is generally believed that the determination of 
^(A^) would provide all meaningful information con
cerning the interaction of a beam particle with one of 
the target particles. Frequently one assumes that the 
elementary scattering interaction is known and one is 
interested in determining the geometrical structure of 
the target. In either case it is ^(A^) rather than the 
experimentally measured quantity ^(A^)! that is 
needed; one must have the phase as well as the magni
tude of ^ This troublesome problem arises in many 
contexts, ranging from chemistry to elementary particle 
physics. One of the most acute of these is the deter
mination of molecular structure (especially of large 
organic molecules) by x-ray scattering, where the phase 
problem has received much attention.3 

In an Appendix we discuss briefly the x-ray phase 

r^ SOURCE 

V^YTARGET 
FIG. 1. Conventional scattering / ^ ^ ^ X 

experiment. / 

DETECTOR 

3 See, for example, the survey by Encyclopedia of Physics. 

FIG. 2. Illumination of a target 
with two sources. 

U D 

problem as one of analytic continuation of ^ as a func
tion of complex Ak. It is shown that an integral equa
tion may be written for, say, the real part of ^ which 
has a finite number of discrete solutions rather than a 
unique one. The classification of the ambiguities in
herent in the phase problem in this way is interesting 
and may even be useful in conjunction with other more 
conventional approaches.3 It doesn't really solve the 
problem, however. 

Mathematical trickery or the elaborate computa
tional schemes widely used in practical x-ray diffraction 
structure analysis are no substitutes for a direct experi
mental determination of the phase of the scattering 
amplitude. Such a determination appears to be feasible 
through the measurement of intensity correlations, as 
we shall now show. 

To get a feeling for what is involved, consider a 
modification of the usual scattering experiment of 
Fig. 1 in which the target T is irradiated by two sources 
Sa and Sa (see Fig. 2). Particles from these sources 
scattered by the target into the detector will have 
undergone momentum transfers Aka and Aka respec
tively. If it can be arranged that these scattered 
particles interfere coherently in the detector, the 
counting rate which is proportional to 13:(Aka)+3:(Ak0) |

2 

has a term 

$(Aka)&(Aka)+F(Aka)H*ka) • (2.2) 

By varying the positions of the sources Sa, Sa inde
pendently, we can cause Aka and Aka to change inde
pendently and thus measure the phase of £F(Ak) to 
within a constant phase factor (which can be deter
mined from other considerations). 

This experiment will, of course, work only if the 
beam particles are coherently emitted by the two 
sources. Under ordinary experimental circumstances, 
particles emitted by two sources will have random 
phases and the term in the counting rate containing the 
interesting phase information, Eq. (2.2) will vanish. 

By a simple modification of the experiment illustrated 
in Fig. 2, the lost phase information may be recovered. 
We replace the single detector D by two spatially sepa
rated ones, D\ and Dh as shown in Fig. 3. The in-
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"[* FIG. 3. Arrangement for 
measuring the correlated re-

pw sponse of two detectors, 
Vii^X from a target illuminated 

\ by two sources. 

\ 

\_J CORRELATOR 

stantaneous counting rates of Di and D\ are multiplied 
together in a correlator which registers only if D\ and 
Di count in coincidence.4 Since particles from either 
source may be scattered into either counter, there will 
be four scattering amplitudes in the correlator counting 
rate. We label these by the index pairs which designate 
source and detector; $(\a), &(l,a), $(\a), and $(l,a). 
It is clear, and we shall see it in detail shortly, that the 
correlator counting rate contains a term5 proportional to 

5 (X,a)$* (Z,a)# (l,a)$* (X,a)+complex conjugate. (2.3) 

By moving the sources and detectors independently of 
each other, the phase of the scattering amplitude $ may 
be determined. 

The remarkable feature of this result is that there is a 
correlation yielding the phase information in spite of 
the fact that the two sources Sa and Sa are entirely inde
pendent; they emit particles with completely random 
phases. Similarly, there is no phase requirement on the 
detectors. We imagine only that the detector voltage 
outputs, proportional to the counting rates, are multi
plied together in a correlator. The reason that the 
random phases of the beam particle wave function do 
not lead to a vanishing of the correlation expressed by 
Eq. (2.3) is that each index, X, /, a, and a occurs twice— 
once in an $ and once in an #*. 

The fundamental principle involved here is the 
quantum mechanical indistinguishability of the two 
possible ways of getting a coincidence in the two 
counters. Needless to say, this is the basis of the original 
Brown-Twiss effect as was so clearly explained by 
Purcell.2 

There are many possible variations of the experiment 
just described. For example, the two sources may be 
replaced by a single one; the two detectors replaced by 
one biased to count only coincidences of two or more 

4 A "coincidence" is generally denned by the response-time 
characteristics of the circuitry of the detectors, as is described in 
Sees. IV and V. 

6 All other terms in the correlator counting rate may be elimi
nated by proper circuit design. 

particles at a time; more than two sources and/or 
detectors may be used. 

Let us consider the two source-two detector experi
ment shown in Fig. 3 in more detail. We imagine that a 
given observation is conducted for a time T, during 
which a large number, n, of beam particles are emitted 
by both sources. The beam particles are each emitted 
at a time tj(j= 1, 2, • • •, n) during the interval T. The 
wave function describing the scattering of the jth 
particle is <fo(x,/) where x(t) is the space (time) co
ordinate of the beam particle. A wave function | <£) for 
the entire scattering experiment is to be constructed 
from a symmetrized (antisymmetrized) product of the 
n #/s when the beam particles satisfy Bose-Einstein 
(Fermi-Dirac) statistics. 

To characterize the counting rate, we introduce the 
beam particle flux operator F(l) which describes the 
number of particles per unit area, per unit time at 
position Z in detector Di. For a detector of unit area 
which counts all of the particles striking it, the mean 
counting rate, Ci(Z), is given by 

d(i) = <*TOI*>. (2.4) 
This is the average counting rate if the observation 
(repeated many times) is always over a time interval T, 
with the system in the pure state |$). In practice, the 
same state |<£) is not appropriate for the separate 
observations. A statistical average over the times of 
emission, tj, phases, and numbers n of particles must be 
performed. We designate this statistical average by a 
subscript "av." The mean counting rate for an actual 
experiment will be written as 

Ci(0 = <*|F(l)|*>„. (2.5) 

If the counting rate at D\ is also measured, but not 
multiplied in the correlator by the rate at Dh its mean 
value will be 

Ci(*) = <*|F(*)|*>. (2.6) 

We have assumed that D\ also has unit area and unit 
efficiency. 

If we now attach the correlator to read the instan
taneous outputs of the two detectors, its counting rate 
will be given by the average of the product of the two 
flux operators, 

C*(\l) = (*\F(X)F(l)\*)„. (2.7) 

This is not necessarily equal to the product of Ci(X)Ci(l) 
and provides the basis for our proposed experiment. The 
physical origin of the effect lies in the fact that the 
average correlator reading represents the ensemble 
average, designated by (<£ | • • • | <£>)av, of the instan
taneous fluxes, while CiCX)Ci(Z) is the product of the 
ensemble averages of the two fluxes. The manner in 
which the ensemble averages are carried out is the 
critical factor. 

Next we express the various counting rates in terms 
of the beam particle wave functions and ultimately in 
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terms of the scattering amplitudes. The counting rates 
CI(OL) or Ci(l) involve the average of a one-particle 
operator since F(l) is proportional to the density of 
particles at I, 2j5(Z— xy). For an appropriately sym
metrized product state |<£), Ci(^) takes the form 

*•* (2.8) 

n 

= <E»i*i*(V)*i(V)>av, 

where t>y is the group velocity of the wave packet 
describing the jth particle, and (• • • )av means that the 
purely statistical ensemble average is to be carried out 
as described above. 

The expectation value encountered in the evaluation 
of Ci{\T)i Eq. (2.7) is a familiar one, involving a two-
particle operator, essentially 

£ 8 ( a . - x O I ) 5 ( l - x y ) . 

Writing this out in detail, with the understanding that 
X and I are spatially distinct, we find for C2&,1), 

C2(M) = < E {(4>ifF(^iX4>i9F(t)4>i) 

± (*y,F(*)fc) (*^(0*y)»av (2.9) 

±^*(^,O^(^/)^*(M)0i(M)}). 
We see that it is just by what is commonly referred to 
as the exchange term that di^l) and G(^)Ci(0 differ. 

We may express the single counter rate Ci(X) or the 
correlated rate C2 CM) in terms of the scattering ampli
tudes SF by remarking that the wave function $y(^,/) is 
proportional to 

(eikD*/Dx)F(\,a) or (eikD*/'D^F'(X,a), 

where D\ is the distance from target to detector X, 
k is the wave number of the scattered particle, and a or 
a is to be used depending upon the source. Evidently, 
then, we see that Ci(^) as given by Eq. (2.8) is pro
portional to 

|$F(X,a)|H-|*(MI2, (2.10) 

for two sources of equal intensity. In a similar way we 
see that the first, or so-called direct term in C2(^,0, 
Eq. (2.9), is proportional to the product of the expres
sion (2.10) and one just like it with X —» I The exchange 
term is seen to be proportional to 

+complex conjugate, (2.11) 

which is just the expression (2.3). 

( * ^ X 

FIG. 4. The single scattering [Za 

experiment. \y*~ 

In order to use the information contained in Eq. 
(2.11) we must study carefully the relative magnitude 
of all contributions to C2(^,1), to learn whether the 
interesting one has a significant size. It is clear from the 
second form of Eq. (2.9) that for X~l, the direct and 
exchange terms become equal in magnitude. When 
the detectors are moved apart, the exchange term 
oscillates in amplitude (because of the phases of the 
SF's), and this is what we want. In practice, the relative 
magnitude of the direct and exchange terms will be 
affected by the source and detector dimensions and by 
the electronic circuitry of the detectors and correlator. 

The remainder of the paper will be devoted to in
vestigating all of these questions in a systematic way. 

III. DESCRIPTION OF THE SCATTERING PROCESS 

Before giving a detailed analysis of the intensity cor
relation experiment, it is desirable to describe the funda
mental scattering process more precisely. This may be 
done very generally in terms of only the scattering 
amplitude $, as introduced in the last section. Because 
of the specific applications that we have in mind, how
ever, we shall limit the generality of our discussion to 
scattering by a "loosely bound" target [see the condi
tions (S.3) and (3.4) below]. This simplification is 
irrelevant for the observation of intensity correlations, 
but is useful for describing applications. 

As was assumed in the last section, the beam par
ticles may satisfy either Bose-Einstein or Fermi-Dirac 
statistics. They are emitted by a source 5 (which may 
be a composite system of several discrete sources). 
They are scattered by the target T and counted by the 
detector Dh as in Fig. 4.6 The target T is assumed to 
consist of N mutually bound particles, not necessarily 
identical. These bound particles are regarded as the 
elementary scatterers of the beam particles; their 
choice is largely a matter of convenience. For example, 
they might be the atoms forming organic molecules, 
which in turn are bound in a crystal lattice. (We defer 
to the next section a discussion of the detectors.) 

6 The second detector will be added later. 
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Each beam particle is assumed to have a spin S and 
an energy ev when its momentum is p. A typical plane-
wave function for a beam particle is written as Xa, 
where "a" labels both the momentum and spin orienta
tion. The N target particles are assigned spatial co
ordinates and spin variables z« and sa (a= 1, • • •, N), 
respectively. The wave function for the target sys
tem, prior to the scattering, is written as go(zhSi; 
Z2,$2,* * -ZjVjStf), or more compactly as go(z,s). The 
steady-state wave functions describing the scattering 
of a single-beam particle by the (entire) target are 
written in the conventional notation7-8 as \l/a

+. (The 
superscript " + " implies that asymptotically the wave 
function consists of the sum of the "initial state," 
Xag0(z,s), together with outgoing scattered particles.) 

This condition simplifies the description of the scatter
ing interaction at the target.9 I t is ordinarily satisfied 
with great accuracy by x-ray and electron scattering 
from chemically bound targets. The second condition 
that we require is that the ratio, 

scattering mean free path within T 
: » 1 . (3.4) 

size of target T 

This permits us to neglect multiple scattering of the 
beam particles within the target. In the language of 
ordinary x-ray theory, our condition (3.4) corresponds 
to the neglect of both primary and secondary extinction. 
This limitation is no more essential in principle for us 
than is it in the standard case. 

For the process of interest to us, namely the correla
tion scattering experiment, it is important to consider 
the times of emission, scattering, and arrival at the 
detector of each beam particle. For this purpose we 
must construct wave packet states from the \f/a

+ which 
permit a spatiotemporal localization of the particles 
(to within the limits, of course, set by the uncertainty 
principle and the experimental conditions). Using a 
symbol j (j— 1, 2, • • •) to designate an individual beam 
particle, we have10 

fcw (0 = j Ppfr^Ajiti+au?, (3.5) 

where Aj(p) is the amplitude (to be specified more 
precisely below) corresponding to an initial momentum 

7 M . Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 
(1953). 

8 M. L. Goldberger and K. M. Watson, Collision Theory (John 
Wiley & Sons, Inc., New York, 1963), Chaps. I l l and V. 

9 A thorough discussion of the weak binding condition is given 
in Sees. l l .A and l l .B of Ref. 8. 

10 See Ref. 8, Chap. I l l , for a detailed description of the scat
tering of wave packets. See also E. Merzbacher, Quantum Me
chanics (John Wiley & Son, Inc., New York, 1961). 

If the Hamiltonian for the system (beam particle plus 
target) is H, \pa

+ satisfies the Schrodinger equation (with 
the boundary conditions noted above), 

27*a+=E«*«+, (3.1) 
where 

Ea=ep+Wo, (3.2) 

with Wo the energy of the target in the state go. 
Since we shall ultimately be interested in exploring 

the geometrical structure of the target, it is desirable 
that the dynamics of the elementary scattering events 
be as simple as possible. Therefore, we make two as
sumptions concerning the scattering process. First, we 
assume the condition of weak binding obtains. By this, 
we mean that the ratio, 

p for the particle (recall that Ea=ep+Wo), and \j/au)+ 

is a particular steady state \pa+ for beam particle j . The 
amplitude Aj(p) is assumed to satisfy the normaliza
tion condition, 

y^My(P)|»=l. (3.6) 

I t is convenient to limit ourselves to wave packets of 
particles of a rather well-defined energy eKj and mo
mentum Ky (7= 1, 2, • • •) in the sense that 

^4y(p)~0, unless | p— K / | « | K J | . (3.7) 

Finally, we shall choose the phases of the ̂ 0(i)+ in such 
a manner that if tj is the time at which the particle j 
is emitted by the source, irrespective of the location on 
the source, 

Aj(p) = eiE^A^p)y (3.8) 

where Aj(p) is independent of tj and of the coordinates 
of the emission point. 

We require the wave function ypuu) m the vicinity 
of the detectors, which in practice will evidently be 
placed at a distance large compared to h/nj from the 
target. Consequently, only the asymptotic form of 
^o(i)+ is needed for the evaluation of Eq. (3.5). This in 
turn may be given explicitly under our assumptions of 
weak binding, Eq. (3.3), and single scattering, Eq. (3.4). 
We define (see Fig. 4) 

R / ^ R , + Z a (3.9) 

as the vector from the source point dy of beam particle 
j to the coordinate za of the scattering particle a. Also, 
we define 

D ^ D j - Z a (3.10) 

as the vector from the coordinate za to a point I in the 
detector Di. We may write, then, according to our 

kinetic energy of a beam particle 
f l _ _ » i . (3.3) 

magnitude of average binding energy of a single target particle 
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assumptions, 

Vati) •x+ (0 
N eipDi<* i 

X a + E (2TT)-3/2 fa@i°,$)eW \go(z,s) 
«-i ZV J 

- ^ ( / ) + ( O g o ( v ) . (3.11) 

Here the quantity fa0ia,P) represents the scattering 
amplitude for scattering a beam particle by the target 
particle a, the momentum of the beam particle being 
parallel to p0f) before (after) the scattering. The 
scattering amplitude fa is in general one column of the 
scattering amplitude matrix in the spin space of the 
beam particle and of particle a. The quantity, 

* « = | / « | 2 , (3.12a) 

where fa is a given matrix element of the scattering 
amplitude,11 is the differential scattering cross section 
for scattering between pure spin states of the beam 
particle on the target particle a. The cross section aver
aged over spin states is 

^a = ^ I /a | 2 , (3.12b) 

where S represents a sum over final and an average 
over initial spin states. The factor exp(^p«Rya) in Eq. 
(3.11) appears as a result of our phase convention (3.8), 
since this accounts for the "travel t ime" from d, to 
z«. The sum over a in Eq. (3.11) corresponds, of course, 
to the adding of waves scattered from each of the target 
particles. 

Strictly speaking, the expression we have written 
for rpau)^ is correct only for what is called quasielastic 
scattering. This is scattering under conditions such that 
the momentum transfer to a target particle is not large 
compared to the range of momenta which it has in the 
initial state, go.12 For larger momentum transfers we 
may still use Eq. (3.11) if we interpret the coordinates 
za in go to be "displaced coordinates" and appropriately 
shift the momentum of the scattered particle in accord
ance with energy conservation. For our eventual appli
cations (to intensity measurements) we need not bother 
to do this. The reason is that the corrections are re
quired only when the scattering is inelastic, or inco
herent, in which case there is no interference among the 
scattered waves in Eq. (3.11). We shall see that this 
lack of interference is taken care of, for our purposes, 
automatically in Eq. (3.11).13 We may simply use it as 

it stands provided the weak binding and single-scatter
ing conditions are obtained. 

To give the scattered wave in Eq. (3.5) an explicit 
form we introduce a wave packet amplitude G3'(x) 
defined by 

G'(x)= J dWAiXk'+Kj)[eik'-*/(2<ir)M']. (3.13a) 

We note that 

11 We use the same symbol for both the matrix fa and a single 
element of this matrix. The distinction will be clear from the con
text in which fa is used. 

12 See Sees. 11.A and l l .B of Ref. 5 for an extended discussion 
of this point. 

13 A kinematic correction is required, however. This amounts to 
replacing Eq. (3.12) by the cross section for a free target particle a. 
If we simply replace <ra in our final expressions by the cross section 
for a free target particle, we need not worry about this point. See 
Ref. 5, Sec. l l .B. 

/ 
d*x\G3'(x)\2=l (3.13b) 

according to Eq. (3.6), so that |G'(X)I2 represents the 
density of beam particle j at the point x. This function 
G3 is so chosen that it is different from zero only in the 
neighborhood of x=0. To see the significance of G3 a 
little more clearly, consider the wave function of a free-
beam particle chosen to be located near a point R at 
time t=tj as it evolves in time in the absence of a 
scatterer. Its wave function would be 

iKx) 
- / • 

d3p 
-A'\p) exp£-it(p)(t-tj)+ip- (x-R)] 

(2TT)3 / 2 

^exp[—U(jCj)(t—tj)+iKj- ( x - R) ] 

d*k 
X 

/"« 
-A'(k+Kj) exppft • ( x - R - Vj(t-tj))l 

(2TT)3 /2 

= exp[—ie (KJ) (t—13)+iv.j • (x — R) ] 

X G ( x - R - V i ( * - * y ) ) , 

where v,«= V^e^. is the group velocity (which for x rays 
is just the velocity of light). We have neglected the 
spreading of the wave packet here, which is legitimate 
under most experimentally interesting conditions.14 

Using the fact that, in forming the wave packet state 
described by Eq. (3.5), ^==Ky+(p— KJ)-KJ, together 
with our phase condition (3.8), we find (for a point I 
not in the path of the incident beam) 

^cy>=E e*«*'afa0i"A) 
«=i Dia 

XgoeriE*Mt*-*fl, (3.14a) 

Ea(j) = Wo+eK. 
where 

and 
V ; = VKj€Kj= KjdeK./dKj, 

as above. We have again assumed that spreading of the 
wave packet may be neglected and that the time / is so 

14 The neglect of wave packet spreading is irrelevant for our 
final results, however. 
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large that the asymptotic form (3.11) of the wave 
packet may be used. 

The source point dy must clearly lie at that location 
on the source for which 

Rf^icj, (3.15) 

since the "direction of travel" must be parallel to the 
momentum vector of the particle. This permits us to 
rewrite Eq. (3.14a) as 

N eiKjDia 

«-i Df 

XGt{t£Di"+Rj'-vJ(t-ti)]} 

Xgo*-ilp5(/> (*-«/>. (3.14b) 

This expression vanishes unless 

t^tj+l/v^Df+Rj*), 

which specifies the time of arrival of the wave packet 
at the detector. 

We have so far considered the scattering of only a 
single-beam particle. In order to discuss any process 
involving the interference of different beam particles, 
we must take into account the scattering of many 
particles. To do this we imagine that a given observa
tion is carried out for a time interval T (large compared 
to the beam flight time from source to detector), during 
which time there are n(2>l) beam particles emitted 
by the source. We assume that any cumulative change 
in the target (i.e., in the state go) due to previous scat
terings may be neglected when we are studying any 
given scattering. Such an experimental constraint seems 
necessary if target structure is to be revealed by suc
cessive scattering events.15 

In terms of the wave function <pau)+ introduced in 
connection with Eq. (3.11) we may define a new time-
dependent wave packet, analogous to Eq. (3.5): 

*«(/> (*,0 = fd*pe-^A3{p) *«(,>+(r). (3.16) 

Here the coordinate I has been replaced by the general 
point r. In the asymptotic region we find from Eq. 
(3.14b) [by simply striking out the factor go(z,s)2 

N e
iKiDrCi 

**c/>(r,0=£ eWfa 

«-l Dr
a 

X G(k£Dr°+Rf- vs(t- /,)]) 

Xe~iEzu) <*-'*>. (3.17) 
We have again assumed that r does not lie in the path 
of the unscattered beam. 

15 We would not, for example, want the target to be melted or 
vaporized or have even the lattice structure changed during the 
course of the experiment. 

The symmetrized product wave function for the 
scattering of the n beam particles is16 

1 
$(*V ' •'»; 0 = 7 - — ; E €<^s<i)(ro1,0 

(w!) 1 ' 2 Q 

X$( - -0"^a (n ) ( r Q n , 0 . (3.18) 

Here Q represents a general permutation of the beam 
particle coordinates (now including spin variables) r, 
so that under the permutation Q, ri —> TQV • • •, rn—-> tQn, 
The quantity €Q has the values 

eg= 1 for Bose-Einstein statistics; 
= — 1 if Q is an odd permutation of a 

standard order, (3.19) 
= + 1 if Q is an even permutation of a 

standard order, Fermi-Dirac. 

The complete state vector describing the scattering 
experiment is then 

|#>= / <Prn$(iv • -,r„; t) I ri,r2- • • r»)g0(v), (3.20) 

where | r r - - r n ) is a basis vector for the n beam 
particles. The integral over the r's is to be understood 
as including a sum over spin variables.17 

IV. DESCRIPTION OF THE DETECTORS 

In this section we shall construct a counting rate 
operator for the detectors. It is clear that this must 
involve essentially the flux operator at the detector, 
but should properly take into account the geometric 
efficiency of the detector as well as any time-delay 
characteristics of its response. Since the detectors are 
generally far from the target (i.e., many wavelengths 
away) we are concerned only with the asymptotic 
form of the scattering wave functions. Since such func
tions may be represented as a superposition of plane-
wave states, it is natural to introduce a complete set of 
such states Xs(x) for the beam particles. The index s 
labels both the momentum k and the spin orientation 
of the particle. We introduce creation (annihilation) 
operators as^(a8) for these states satisfying the usual 
commutation relations18: 

{a„a8>l± = [a8 \a8> t ]=0 . 

In order to take into account the finite counter size, 
geometric efficiency, and response time characteristics, 
the simple flux operator introduced in Sec. II which 
was simply proportional to the particle density, Eq. 

16 The notation here is that of Sec. 4.B of Ref. 8. 
17 The use of space coordinates to represent asymptotic photon 

wave functions is described in Sec. 9.B of Ref. 5. 
18 Here [AtB^—ABzLBA, where the plus (minus) sign is to 

be used for Fermi-Dirac (Bose-Einstein) statistics. 
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(2.5) must be generalized. This is most easily done in 
terms of "field operators" constructed from the opera
tors (4.1). These are 

a 

* t (x )= ( * (x ) ) t . 

(4.2) 

If it were not for the presence of y(k), these would 
be the usual configuration space second-quantization 
operators satisfying the commutation relations 

[ > ( x ) ^ t ( x ' ) ] ± = 5 ( x - X ' ) , (4.2') 

such that operating on an ^-particle state | Xi,x2, • • • xn) 

<p*(x)<p(x)\xh--,xn) 

= CE«(x-x<)]|x1,.-.,Xn>. (4.2-) 

The reader who is unfamiliar with the techniques of 
second quantization may retain his sanity (and under
standing of the subsequent manipulations) by re
membering Eq. (4.2). 

The function y (k) will be chosen to take into account 
the efficiency of the counter; it is related to the actual 
counter efficiency T (k) for particles of momentum k by 

time-delayed counting rate operator R(X,T) by 

R(x, -T) = e-iK'Ro(x)eiK*, (4.7) 
= *>t(x, - r ) p ( x , - r ) , 

where 

<p(x, -T) = e-iKr<p(x)eiKT=,£sy(k)A8e
itkTXB(x)7 

<P+(x, - r ) = [>(*, - r ) ] f . 
(4.8) 

The operator R(x, — r) evidently introduces a delay r 
in registering each particle counted. A counter with 
finite bandwidth characteristics is then represented by 
a counting rate operator 

where 

R(x)^ drL(r)R(x,-r), 

r00 do) 
L(r)= —e~^B(oS). 

Jo 2TT 

(4.9) 

(4.10) 

\y(k)\*=v(k)T(k), (4.3) 

where v (k) is the velocity of a particle of momentum k. 
If the counter were localized at x and had instantaneous 
response characteristics, the counting rate operator 
would be 

The quantity B(co) gives the frequency characteristics 
of the counter "behind the square law detector," 

Finally, the finite detector size may be taken into 
account by supposing that Eq. (4.9) describes the 
counting rate for an element of the counter (which 
might be an atom or molecule or small area element 
located at x=Z). The complete counting rate operator 
for the detector Di in Fig. 4 is obtained by summing 
these "elements:" 

*i(fl = E i* ( J ) . (4.11) 

The average counting rate Ci(l) introduced in Sec. 
II, Eq. (2.5) becomes19 

JRo(x)s^t(x)^(x). (4.4) Ci(0 = <*|*i(OI*>* 

Were T(k) = l, this would be just the flux operator of 
Eq. (2.5). 

Next we consider the bandwidth characteristics of 
the counter. To do this we must introduce a time-de
layed counting rate operator and a transfer function 
which describes the manner in which instantaneous 
signals are transformed into actual recorded ones after 
a time delay inherent in the apparatus. The total 
kinetic energy operator for the n beam particles is 

where 
' Jo 

drL(r)J'{l,t-r), 
(4.12) 

J'(I, t-T) = {$\tf(l, -r)Hh - r ) | *>„ . (4.13) 

#=£#„. (4.5) 

Here Kv is the kinetic energy operator for the *>th beam 
particle. If this particle has been absorbed, the corre
sponding Kv is taken to vanish; otherwise for the one-
particle plane-wave state Xs(x„), 

KvXs=ekXs, (4.6) 

where c* is the particle energy. We may now define the 

The state |$) was defined by Eq. (3.20). 
The evaluation of / ' , using Eqs. (3.18) and (3.20) is 

relatively straightforward. It is helpful to mentally 
express the wave functions in |<£>) in terms of a sum 
over the complete set of plane-wave states while carry
ing out the manipulations. The result is almost self-
evident so we shall omit the details. We find, using 
Eq. (4.3), 

J'(l,t) = (i: rfe>i(g0^S(i)t(/,0^So-)(^Ogo))av. (4.14) 

The asymptotic form, Eq. (3.17), may be used for the 

19 In doing this we make use of the ensemble average, denoted 
by "av," to introduce a phase randomization which will ensure 
the orthogonality of the various 4>a(j)'s-
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scattering wave functions $ in Eq. (4.14) to give 

J'(i,t)=— (i: r fok E {go, GK(alDf+Rr-v]{t-t^)G'*(KlDl^+R/-vj(t-t1)-]) 

X e x p f e ^ - ^ + i ^ - i ^ ] / / / ^ } ) • (4.15) 
' 9 V 

We have assumed that the target is small enough that 
[_DiaDi^']~1 may be replaced by Dr2; it is trivial to 
insert the exact factors at any time. Since the fa's are 
column (spin) matrices, we write f^fa to indicate a 
matrix product. 

The simplest application of Eq. (4.15) is to the case 
of incoherent scattering. To avoid any possible mis
understanding, we remark that by incoherent scattering 

we mean that the waves scattered from two different 
elementary scatterers do not interfere. Thus all terms 
in the sum in Eq. (4.15) for which ctj^fi drop out. If 
the energy spread of the beam is sufficiently narrow, the 
counter efficiency, r(/c/), may be taken to be a constant; 
T, and the differential cross-section (ra~(fjfa) [Eq. 
(3.12b)] removed from the sum over j . We find then 
that J' becomes 

^'(1,0 = — £ *«{<E ^ 0 , | G ^ y [ ^ « + i 2 y « - » y ( ^ / y ) ] ) | ^ o } > a (4.16) 

If the target is uniformly illuminated by the beam, we case, we again assume that we may set T(KJ) = T 
may remove \GJ'\2 from the wave function average and = constant. We are led to consider the quantity 'F' 
then set (go,go) = l. Now the flux incident upon the defined by 
target FT is given by 

FT=(Zvj\G^£Dl-+Rj^vj(t-tJm%v; (4.17) \ t i 

X G ^ ( ( * £ Z V + * / - ^ ( / - * / ) ] ) 

X e x p [ ^ ( A a - W + i ? y « - * / ) ] > a v . (4.21) this will be independent of time during the time interval 
T if the beam intensity is held constant. The flux of 
scattered beam particles at the detector, FD, is given by T n i s expression, which occurs in Eq. (4.15), reduces to 

FD=l/Dt&Ja)FT. (4.18) * r when « = 0 . 
Now we insert the Fourier representation for the 

The factor T in Eq. (4.16) connects this flux with the wave packet amplitudes G\ as given by Eq. (3.13), 
actual detector efficiency. The counting rate as defined into Eq. (4.21), 
by Eq. (4.12) is20 

Ci(0 = E — ( E *a)FT / drL{r). (4.19) G>(x)= / ——A* (V+*)€*''*. 
i Di2 a J0 J (2TT)3/2 

If we choose to interpret T as the efficiency per unit We obtain, on writing k = KJ+ k'• ilj, p= KJ+IL"-KJ, 
active area of the detector, we may set 2i = fd2(l) 
where dX(l) is an area element of the detector surface. 
For a detector small enough that Di and aa are con
stant over the surface, we have 

\U J ( 2 T T W (2TT)3/2 

C1(l)=(2l)TB(0)FD (4.20) 

(2TT)3/27 (2TT)3 

X e x p [ ^ ( D ^ + i ? i
a ) ] expp(ep-ek)(t-t })~] 

X e x p [ - ^ ( D ^ + i ? / ) ] \ . (4.22) where (2j) is the detector area and I?(0) is the dc 
bandpass characteristic of the circuitry [see Eq. (4.10)]. 

The normal situation considered in x-ray diffraction 
theory is one in which the waves scattered from the I n deriving this relation we have used the fact that the 
different elementary scattering centers in the target Aj(fy a r e p e a k e d around KJ to replace (p-k)vj by 
are coherent. In this case, all of the terms in the sum (ep-ek).It is convenient to introduce new wave packet 
over a, P in Eq. (4.15) must be kept. To discuss this amplitudes by 

20 We have supposed that in a practical experiment the response 
time of the detector will be very short compared to the observa
tion time T. 

a>'(k)= / F(^kyi^(k)/(27r)3 / 2) , (4.23) 
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in terms of which tF) becomes these may be written as 

1 C 
' ^ { E v, fdk fdpai(k)aJ*(p) —jfcU) 

Xexp[ik(Dia+Rja)~] exp[i(ep— e&) (/—13)~] where 2S is the total source area, and d2(j) is an element 
of surface in the neighborhood of the source point Aj 

v V—'h(T) M- 7? ^~l \ (A 1X\ ^see ^>* ^' "̂  ^ e s u r^ a c e °f ^ e s o u r c e emits particles 
^L P\ l 3 JJf - \ J uniformly, we may introduce a normalized beam spec

trum in the following way. A frequency w(k) is defined by 
As part of our agreement on the ensemble average, (b)= /h 

we must imagine that the emission times, tj, will occur ^ ' 
randomly during the interval T, the time duration of w h e r e ek is the beam particle energy. Now we use the 
each observation in the ensemble. We may, therefore, fact th a t FT, the incident flux, in the present notation 
insert an average becomes [setting Dap>'=0 in (4.27)] 

1 rT 

~[ dtr~, (4.25) / r 2TT V 
rJo FT=(X dk-\a>'(k)\y 

1 rT 

— / dtj expp(ep— ek)tj] = —8(€p— €k). (4.26) 
TJ o 

g(f*) = (lL tdM[w-o>{k)J (4.30) 
T FT J' av 

within the summation in Eq. (4.16). In general, one 2 n\ 
will choose the observation time T to be such that VjT _ / ^ / v / dkbYw—co(&)l U?(&)|2 / 
is much greater than the jth packet. After all, we do J \ / J LT J ' av 
want to observe the entire scattering process. We may 
consequently set where in the second line we have simply inserted a 

formal 5 function. This leads us to define the beam 
rT 2w spectral function g(co) according to 

-2TT a W | \ 

Since Vjdp~dep [because of the packet aJ'(p)2, we may 
rewrite Eq. (4.24) as 

which has the property tfda)g(u>) = l. [If the source is 
/ n r 2w \ n o t uniform, g(<a) will be a function of the source 

'** = < E dk— \ai(k)\2exp[ikDafi>l\ , (4.27) point dy.] In terms of g(a),'F' Eq. (4.29) may be 
v^J T ' av written as 

where ^ 
Da^Df-Df+Rf-Rf. </?' = — fd2(j) [ dogfa) expftjfe(s*)Daff\, (4.31) 

Since we are considering an ensemble average, the 
sum over j in Eq. (4.19) is equivalent to an integral where we have inverted the 5-function restriction 
over the surface of the source and an integral over the a>=co(&) to express k as a function of cu. 
energy spectrum of the beam particles. The first of On inserting (4.31) into Eq. (4.15), we obtain 

FT r r r N 
J'(l,t) = dX(j) dcg(c){gQy E rtfaexp£ik(a,)(Dl«-Dle+Rj«-Rje)-]go}^. (4.32a) 

Di22J Jo «,/*-i 
In many cases of practical interest the / a are independent of spin, or the spin dependence may be factored out of 
f^foc (as is usually done for x-ray scattering). Then we may write (see Fig. 4) 

FT T r /-00 N 

J'(!,t) = / iL(J) / <M«){£o,| E fa <W&K<*)(Dl"-Dl+Ri"--Ri)l\*goUr. (4.32b) 
DfZsJ Jo «-i 

FT r 

>r 

Since this is independent of r, the counting rate (4.12) is 

FTT 
C I ( / ) = f drL{r) £ — fdZ(j) f </cog(co){g0,| E /« e x p P f t ^ C D ^ - D i + ^ - U ^ l ^ o J a v . (4.33) 

Jo i DftJ Jo «-i 
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For a small source, a small target, a small detector 
and a nearly monochromatic beam [so k{co)~k, a 
constant] this reduces to 

Ci(0= 
B(0)TDFT 

Dt 
(4.34) 

X {go, | E /« exppfcC??,—A) • z«] 12go}a 

Here we have absorbed the detector area in the con
stant TD. The quantity 

| E / a e x p [ ^ ( i ? y - A ) - z J | 2 

is just the usual x-ray form factor. I t is usually cus
tomary in discussing x-ray scattering to rewrite the 
average in Eq. (4.34) in the approximate form, 

Ci(0 = 
B(0)TDFT 

N _ (4.35) 
X | E Mgo, ex-p\jk(Rj—A)'Z«]go}av|2. 

This form may be used if the scattering is elastic and 
in some other cases.21 

For later reference we note the commutation rela
tions for the field operators (4.8), 

[>(x, - r ) , <p(x\ * - r ) ] ± 

= [>*(x, - r ) , ?+(x', * - r ) ] ± = 0 (4.36) 

[>(x, - r ) , ^ ( x ' , * - r ) ] ± 

= E .T(k)v(k)X8(x)X8*(xf) exp(iekt). 

V. THE MEASUREMENT OF INTENSITY 
CORRELATIONS 

We are now ready to study in detail the correlated 
counting rate for the two detectors D\ and Di, as 
described in Sec. I I . For simplicity, we assume that 
the two counters are identical and that they are repre
sented by the counting rate operators R\ and Ri; these 
are the operators introduced in Eq. (4.11). The ge
ometry of the experiment of interest is shown in Fig. 5. 
The source (which may be a composite of two or more 
sources) and target are those described in Sees. I l l and 
IV. The vectors X and I designate arbitrary points in D\ 
and Di. Vectors from the target point za to 2t and I are 

D x a = D x - z a , 

D ^ = D z - z a , 

just as in Eq. (3.10). The vector Rya from source point 
21 We do not wish to go into this question further here. See, 

for example, Ref. 8, Chap. XI, for a discussion of this point. 

FIG. 5. Scattering with 
one source and two de
tectors. 

dy to the target point za was introduced in Eq. (3.9). 
We shall again assume, as in Sec. IV, that the target 
is so small that 

| D x « - D x | « D x , 

| D « « - D , | « D i , 
(5.1) 

although it is trivial to remove this restriction. 
We shall imagine that the entire target is uniformly 

illuminated by the source (or sources). This source (or 
sources) is nothing special for our intensity correlation 
experiment; we cannot overemphasize this point. There 
are no coherence requirements or anything else. I t 
need be only a conventional x-ray or other particle 
beam source. The state vector |<£) given by Eq. (3.20) 
continues to be appropriate. 

The outputs of the two detectors D\ and Di are 
multiplied together; the product is the measured signal. 
We imagine that each observation is made for a time T 
and that an ensemble average of many such observa
tions is taken. This is the same instruction we gave 
for the normal x-ray experiment in Sec. IV. The mean 
correlated counting rate for the experiment is 

C2=<«*|22x*,|#»>av 

„°° °° 
(5.2) 

= E E f dr'( dt'L(r')L(t')Ja(^,t-T';l,t-t'), 
* i Jo Jo 

where 

JaCX, t-r'; I, t-f) 

= < { < * | 0 t ( ^ - r O * ( ^ - - T O * t f t - O 0 ( J , - * ' ) l * > » . 
(5.3) 

The expressions (5.2) and (5.3) describe the output 
of a system in which the counting rate at each detector 
is regarded as a classical quantity. If the treatment 
were fully quantum mechanical through the correlator, 
one might expect the operators in (5.3) to be "normally 
ordered," as in (5.7). The difference between these two 
orderings (which will shortly be shown to be small) 
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involves subtleties of the quantum-mechanical theory 
of measurement in which we would prefer not to in
volve ourselves here. The symbol (• • • )av again denotes 
spin, thermal, and ensemble averages over repeated 
observations. 

We find it convenient to rearrange Eq. (5.3) by 
writing 

^ (^ r )^ t ( ^ ) = [ ^ (^ r )^ t (^ ) ] ± +6^ t (Z , / )^ (^ r ) , (5.4) 

where e= + l(— 1) for Bose-Einstein (Fermi-Dirac) 
beam particles. The commutator in (5.4) is not an 
operator; its value was given in Eq. (4.36). Using this 
relation, we may write Ja as follows: 

= [>(*, - / ) , 0(Z, -?)l±XJ'fr, t-r; I, t~tf) 
+J"(l,t-Tf;l,t-t'), (5.5) 

where 

= <{<*|*t(^,-/)*(?,-OI*>}>av, (5.6) 
and 

J"(\t-T';l,t-t') 
= <«{<*!*'(*, -T')^(l-t')^X, -r')4>{l, -*')l*»>av. 

(5.7) 

and the exchange term, Jc, is 

J C ( V ; Z , 0 = € < E VwT(Ki)T(KJ){go, [ 0 a W
+ ( ^ T ) 0 a W a O < / > a ( i ) t ( M ) * 5 ( y ) ( ^ r ) ] g o } ) a v ^ ( 5 . 1 1 ) 

We make the earlier assumption that the target, T, is a macroscopic distance from the two detectors, so that we 
may use the now familiar asymptotic form for the $o's as given by Eq. (3.17). Furthermore we replace the factors 
(Di01)"1 by Drl etc., in the wave functions.22 

Carrying out the substitution of Eqs. (3.17) for the wave functions, we obtain 

zwv/»(V;M)=<i; wir(*)rfo) £ {got&faZDs+Rf-ViiT-u)])} 
iT^j—l a, /S, y, 5 = 1 

XexV(ulD^-D^+Ri"-Ri^)exp(iK£Di-'-Dl^+Riy-R/2)go}U, (5.12) 
and 

D?D)?Jc(X,T;l,t) = e{ £ vflF(Ki)r(Kj)\jsxp-i(eKi-e.()(.T-t)Ji 

X E {go, Gi(iclDf+Ri"-vi(t-tj)^)Gi*(KlD^+Ri
s-Vi(T-kW 

a, /S, y, 5 = 1 

XGKKlDxU-R^-Vj(r-tj)J)&*(K£D^+R/-Vj(t-ti)2)fS
ifaf^fy 

Xe X p(«£ZV-ZV+i? i a - iV] ) exp(fK£Dx'>-D^+Rjy-Rir\)ga})„. (5.13) 
22 Here and in Eq. (5.26) are the only uses made in this section of the condition (5.1); if it is not legitimate, the correct factors are 

trivially provided, as described in Sec. IV. 

The first term in Eq. (5.5) is entirely nonclassical; 
it results from the fundamental quantum limitations 
on one's ability to make correlated measurements at 
separated space time points—just what we have in 
mind here. Were it not for the smearing in coordinate 
space introduced by our nonuniform counter efficiency 
as described by Eq. (4.21), the commutator in (5.4) 
would be nonzero only on the light cone of the points 
3t, r and l,t, i.e., at (X-l)2-c2(r-t)2=0. We shall 
find presently that the term involving / ' is generally 
negligible in practice. 

Following the arguments leading to the counting rate 
for a single detector as described in Sec. IV, in par
ticular Eq. (4.14), we see that the present J' may be 
written as 

/ ' (V;W 

= ( E VjT fo) (go,*s<i)*( V)0a<y> (M)go))av. (5.8) 
i=l 

It is straightforward to see that J" may be put into 
the form 

/"(V; l,0=/»(V; W+/C(V; U), (5.9) 
where the direct term, Jn, is [as in Eq. (2.9)], 
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We shall first discuss these expressions for the rela
tively simple case that the various waves scattered by 
different target particles do not interfere. This is in
coherent scattering, which for a single detector was 
described by Eq. (4.19). I t is worthwhile noting that 
the strictly incoherent scattering in the conventional 
case gives no information about the target structure 
[see Eq. (4.19)]. Only the coherent scattering leads to 
the intensity dependence on crystalline structure, etc., 
through the form factor of Eq. (4.34). This contrasts 
sharply with the intensity correlation experiment, in 
which the strictly incoherent radiation does give struc
ture information—and, in fact in a somewhat more 
useful form than that obtained from conventional 
experiments. The intensity correlation experiment for 
coherent scattering will be described in Sec. VI. 

There are several possibilities for experimental ar
rangements which will insure incoherent scattering. One 
common method is to choose the beam energy and 
scattering angle in such a way that there is sufficient 
momentum transfer to the target to cause it to undergo 
a transition to an excited state. In this case the various 
scattered waves will not interfere with one another [as 
was discussed in connection with the single detector 
counting rate, Eq. (4.16)]. Consequently, we have for 
the only nonvanishing terms in Jn and Jc, Eqs. (5.12) 
and (5.13) the index pairings 

a = 5 , 0 = 7 (CaseAO (5.14a) 

« = £ 7 = 5 (CaseE) . (5.14b) 

(The other possible pairings such as a=7, (3=5 do not 
contribute to the ensemble average—the phase factors 
cannot match properly.) The Case N corresponds to 
what might be called "normal pairing" in the sense 
that the scattered waves from beam particle "i" are 
matched; similarly those for beam particle "j" are 
matched. The Case E describes "exchange pairing" in 
which the scattered waves from two beam particles 
interfere. In this situation both beam particles i and j 
lead to equivalent excitations of target particles a and 
7. The relative contributions of these two terms to the 
correlated counting depends on the experimental 
arrangements. 

I t may well be undesirable or not even feasible to 
ensure inelastic scatterings only, as described above. A 
particularly simple means of achieving incoherence, if 
it is desired, involves the use of an extended, or perhaps 

multiple, source for the beam. Alternatively one might 
imagine the source (S) to be moved during the course of 
the experiment. I t is clear that by effectively varying 
the points of origin of the beam particles one may ar
range that the ensemble average of the individual ob
servations yields for the exponential factors in Eqs. 
(5.12) and (5.13) 

< e x p ( C ^ ( * a - ^ ' ) + « i ( ^ T - ^ ] ) > a v 
— 5a,8^,y. (5.15) 

This then corresponds to the Case N, Eq. (5.14a). The 
correlated counting rate in two small detectors is then 
measured as a function of counter separation. 

Another possible experiment involves the use of a 
single large detector, so that D% and D\ represent the 
same counter; the counter must, of course, be biased to 
count only the coincidence of two scattered particles. 
(One could also use two large detectors.) In either case 
we would want a well defined beam energy, so that 
Ki=Kj=K, and a pair of small sources with variable 
separation. The counting rate would be measured as a 
function of this separation. In this situation it is the 
variability of the target-to-detector distance that leads 
in the case of Jn [Eq. (5.12)] for the ensemble average 
to the result 

(expiiKtD^-D^+Ds-D^U^daJp,! (5.16) 

which is Case N. Similarly for Jc [Eq. (5.13)] we have 

(exp(iKZD^-D^+Dxy-Dx^))av=8a^7t8, (5.17) 

which is Case E. 
There are evidently many possible experiments in

volving combinations of the conditions considered 
above. The symmetric role played by source and de
tector positions in the correlated counting rate is seen 
in Eqs. (5.12) and (5.13). 

We write out in detail the forms taken by Jn and Jc 

for the two situations encountered in incoherent scat
tering: normal pairing, Case N, exchange pairing, and 
Case E. 

For Case N [Eq. (5.14a)] we find for Jn the result, 

/ „ ( V ; ht) = S'MJ'(l,t), (Case N), (5.18) 
where / ' is precisely the quantity (4.13) encountered 
in the experiment with a single detector.23 (This con
tribution to the correlated counting rate evidently 
contains no information concerning the target struc
ture.) Again for Case N, we obtain for Jc 

n 

DtDtJfar; l,t) = < £ JW/TMrOc/) exp[ -* (7—<)(«* , - e j ] 

X E {go, Gi(iclDf+Ri--vi(t-ti)2)Gi*(KlDx"+Ri"-vi(T-ti)l) 

X&(*£W+Rf-v,(T-ti)l)&*(.klDS+R/>-vJ(t-ti)]) 

X(/« t/-)C/'/i t//»)«p(C*<(^»a--Dx")+«i(I>x f l-I>j f l)])go».v. (Case N) (5.19) 
23 Equation (5.18) involves an approximation in that we have replaced the average "(<i>| • • • |$) a v" by a product of such averages for 
ich / ' factor. Unless the target is so small that mutual excitations due to the two beam particles interfere at the time of scattering, each 

this is a valid approximation. 
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If the experimental situation is such that Case E obtains, we find 

W W . ( V ; W = ( Z ViVjTiKiJTiKj) E {go ,GK«£Z)x 0 +i^ a -^ ( r -^ ) ] )G*(f t [Z)x^+^-^( r -0] ) 

Xexp(iKlDxa-Dx-'+Ri
a-Ri-''])\f^fa\

2exp(iKlDiy-Dl
a+Rjy-Ri'''])g0}\v, (Case E) (5.20) 

and 

Dx*DtJe(X,T; M) = «( E vfljTMrfa) exp[-*(T-0(^-e«,-)] 

X E {go, Gi(klDl
a+Ri"-vi(t-ti)^)Gi*(iclD^+Riy-vi(T-ti)']) 

a, 7=1 

Xexp(Cfc-/cy)(Z)z«-Px^)]) exp(f[K<(«<a-^)+iCi(^--Ry0)])go».v. (Case £) (5.21) 

Let us now discuss the simpler Case N. We wish to 
cast it into a more useful form which expresses explicitly 
the target structure dependence of the correlated 
counting rate. The "normal term," Jn, given by Eq. 
(5.18), is seen to lead to a contribution which is simply 
proportional to the product of the counting rates of the 
individual counters. It contains no structure information 
and describes the result of an experiment done with 
"classical" beam particles having no wave properties. 
Thus Jn leads to the rate C2tn [see Eq. (5.2)] given by 

C 2 , n = E L / dr'l dt'L(T')L(t')Jnfr,t-T';l,t-t') 
x * Jo Jo 

(5.22) 

= Ci(/)Ci(X), 

where d(l) and G( \ ) are defined by Eq. (4.19). 
The simplification of JCy Eq. (5.19), may be carried 

out following the arguments given in connection with 
the single detector [Eq. (4.21)]. We shall assume again 
that r(/c;) = r , a constant, so that Eq. (5.19) contains 
two factors like 

J=l 

XG^KlDf+Rf-vjit-tj)!) 

Xexpp/cy(ZV-ZV)] exp[-^r - / )e K / ] ) a v . (5.23) 

Actually, the terms corresponding to i—j which result 
from the occurrence of two such "F" factors should 
not be there; if the number of beam particles is large, 
as it is in practice, this leads to negligible error. In
serting the Fourier representation of the wave packets 

as we did in connection with Eq. (4.22), we obtain, 

«• r dzk r dzp 

& J (2TT)W (2TT)3'2 

X e x p ( ^ [ Z V + # / - ^ ( - / ; ) ] ) 

Xexpi-iplDf+RZ-vji-tj)^) 

Xexp(—i[tKr— €P0))av. 

Introducing as part of the ensemble average, the aver
age over the emission times t3- as in Eq. (4.25), together 
with the Fourier amplitude a3' defined by Eq. (4.18), 
we are led to the result, 

X e x p ( f [ f t ( ^ - W - € * ( r - 0 ] ) ) a v . (5.24) 

In terms of our spectral function (4.30) and the vari
ables co and k(co) used in Eq. (4.31), we obtain 

"F" = FT[ da>g(a>) 
Jo 

Xexp(CMco)UV-ZV)-w(r- /)]) . (5.25) 

To complete the simplification of "F," we use the 
expansion of D\^=D^ based on the assumption that 
the distance Ro (Fig. 5) is large compared to the 
detector dimensions, namely 

Dyf-Df^ F+—~ + • • • , (5.26) 
Ro 
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where Y is the value of D^—Df when ^ = 0 ; the sub
script JL means the component of a vector perpendicular 
to the direction J?0, from target to detector origin. 
When the spectrum g(co) is reasonably narrow, we may 
introduce the wave number k at the center of g in some 
of the factors of "F" Thus we set 

* («)** * (h- *i)/*o« kze - (Jx- Xx)/R0, (5.27) 

and "F" becomes 

where rj is 

/ N r _/Za'(?l-^l)\l \ / N 

V=[go, L *« exp ikl ) \g0)I ( E *«) • 

""" ° a (5.30a) 

In deriving Eq. (5.29) for Jc, we have used the assump
tion stated in Sec. I l l , that we may average go inde
pendently for different noninteracting beam particles. 
In terms of a scattering density function S (z) defined by 

§(*)= (go, E <ra5(z-sa)g0)/(2a-a), 

'7?"=exp ik \FT do>g{u) 

Xexp(C*(«)-F-w(r-0]) - (5-2^) 

In this case our expression for Jc, Eq. (5.19) simplifies 
to 2 4 

Jcfr,r;l,t) 

= (6/i?o4)r2^2[Ea^]2WI2 

we may write t\ as 

- / 
dsz§>(z) exppftz• & - 3ii)/£0] • (5.30b) 

X / ^ g ( c o 
Jo 

)expOp(co)F-co(r-0]) (5.29) 

It is clear that structure information is contained in 
the quantity rj. Its precise relation to the standard x-ray 
structure factor will be seen on comparison with Eq. 
(4.35). The scattering amplitude in Eq. (4.35) is here 
replaced by the scattering cross section. 

We may now write the complete correlated counting 
rate, Eq. (5.2), for Case N, [aside from the term in
volving / ' in Eq. (5.5) which we take up shortly] in 
the form 

C2=Ez["r^T 
l X i?o2 J 

f dr'i dt'L{T')L{t' 
Jo Jo 

) i+«M dug(u) exp(*I*(«)F+w(T'-0]) (5.31) 

For sufficiently small detectors, the sums over I and X In practice it will probably be desirable to filter out 
may be absorbed into the definition of T as was done the dc component of the output of each detector. This 
in Eq. (4.34). corresponds to taking 

If the target is so large that the approximations 

f drL(r)= f d 
J 0 J — oo 

6 W : ( T ) = £ ( O ) = O 
made in the exponential in Eq. (5.25), as expressed by 
Eqs. (5.26) and (5.27), are not valid, there is no diffi
culty in modifying Eq. (5.31). The more complicated 
resulting expression does not seem to yield additional [see Eq. (4.10)]. In this case Eq. (5.31) becomes 
information. simply 

C2=eZE 
i x [T,rrr\ I/. *'/.ilW)m dug(a>) exp(;[£(co)F+co(r/-//)]) (5.32) 

It is just the factor \rj\2 which will ordinarily be desired 
as a result of the experiment. 

Experiments utilizing others of the conditions (5.14), 
(5.16), and (5.17) are evidently feasible and may be 
described in the same manner. 

Before completing this section we shall discuss the 
contribution to C% from the hitherto neglected term 
involving / ' in Eq. (5.5). From its definition in Eq. 

(5.8) and in terms of the quantities used in Eq. (5.25) 
we may write Jf as 

/ ' ( V ; i / ) 
&c 

^YFT— dcog(a)) 

24 We have written the "av" of the product fa
+fafp

+fp which 
occurs in Eq. (5.19) as crao> This is valid when spin correlations 
in the target are weak, or when all spin states are equally popu
lated, etc. In general, the complete product may have to be 
evaluated with more care. 

Xexp( -C^(w)px a -A a )+co ( r , - / 0 ] ) . (5.35) 

Referring to the definition of the correlated counting 
rate, Eq. (5.2), the expression for the commutator of 
our operators <pr y^ given by Eq. (4.44), we find for 
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the contribution to C2 from the term involving / ' is 

dC2=TFT E £ fdrf UtfL{Tf)L(t'){Z v(k)T(k)X.(X)X*(l) exp[-*€*(*'- rO]} 

xE—/ Jcog(co) e x p { - f [ * ( « ) ( ^ x a - Z > i a ) + o > ( r / - 0 ] } (5-34) 

= 17? r Z — E /" dwB(«+e*)5(-a)-€*)g(o>>(*)r(4)X t(^)X/(0 exp[«(c t f ) ( JD x
a -^ a ) ] . 

In the second form of 5C2 we have introduced the 
Fourier representation of the Z/s in terms of the fre
quency response function of the detectors as defined by 
Eq. (4.10). Now g(co) and T(k) are expected to be non-
vanishing only for a range of frequencies near 

o)~ beam particle energy/^. (5.35) 

On the other hand, the low pass filter characteristic 
of the detector, B(co), is presumedly chosen to be very 
small at this high "carrier frequency/' (5.35). We con
clude, therefore, that under almost any reasonable 
circumstances, 8C2 as given by Eq. (5.34), will be 
completely negligible. 

VI. INTENSITY CORRELATIONS FOR 
COHERENT SCATTERING 

We turn now to an analysis of the intensity correla
tion experiment for coherent scattering. The corre
sponding result for conventional scattering was ob
tained in Eq. (4.33) or Eq. (4.35). Coherent scattering 
is generally of greater interest than incoherent scatter
ing for target structure determination; waves scattered 
from different parts of the target give quite direct 
information of the target geometry. I t is the unusual 
characteristic of the intensity correlation experiment, 
as we have noted earlier, that incoherent scattering 
gives any geometric information. We shall find, how
ever, it is the coherent scattering experiment that has 
the real potential for a direct solution of the phase 
determination problem. 

We begin with the expressions (5.2) and (5.9) for the 
correlator counting rate, repeated here for convenience, 

C 2 = E E / dr'l dt'W)L{t'' 
* I Jo Jo 

the energy spectrum of the beam is rather narrow, or 
because the fa are essentially constant, as in the usual 
x-ray energy regime. Finally, we shall again take the 
T (KJ) to be constant and equal to T for all beam energies. 

Let us first consider J«[Eq. (5.12)]. I t is seen to 
contain two factors such as25 [compare Eq. (4.21)], 

XexpiiKlD^-Bf+Rjy-Rf-]))^. (6.2) 

On inserting the Fourier representation (3.13) for the 
Gps and using the definition (4.23), we obtain 

7 » = / £ > y fdkdpa'(k)afi*(p) 

X e x p ( ^ [ Z V + i ^ ] ) e x p ( - * > [ Z V + i ? / ] ) 

Xexp[ i (€p-€*)(* ' -*y)] \ . 

X[ / „ (X , t-r'; I, t-f)+J.(\ t-r'i I, t-t')y, 

(6.1) 

Jn and Jc are given in Eqs. (5.12) and (5.13). To sim
plify the discussion, we now assume that the scattering 
amplitudes, fa that appear there are either independent 
of spin orientation, or (as in x-ray scattering) that the 
spin dependence may be removed by averaging. I t 
will also be convenient to assume that the variation 
with energy of the fa may be neglected, either because 

The ensemble average (4.25) leads then to 

-2TT 

'-<E/4-F'- (4)1 exp\jkDyp 

(6.3) 

(6.4) 

where 
Dypt^Di'-Df+Rs'-Rf. 

Finally, the spectral function g(co) and the integral 
over source area may be introduced, as in Eqs. (4.30) 
and (4.31), to give 

-7.M. dug (co) exp\jk (o>)Dyp
j2. (6.5) 

The expression (5.12) is seen to contain two such factors. 
A scattering amplitude for the target may be defined 

as [see Fig, 5 for a description of the distances] 

$oQ,j; «) = £ fy(exvik(G))lDly-Dl+Rjy-Rj)). 
7=1 

(6.6) 

25 We here ignore, as in Sec. V, the restriction ij&j in the sum
mations in Eqs. (5.12) and (5.13). 
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[This quantity will be recognized as that appearing in Eq. (4.32b).] The expression (5.12) contains four such 
factors. Putting together the various factors, we obtain 

J ^ T ' I I / ) ^ - ^ ^ - fdX(j)J~ fdS(i)jU,^f < M « ) I W ; w ) l * T / " ^(a , ' ) |SFo(M;co ' ) l 2Jfo} . 

aT(6.7) 
I t is important to note that Jn is independent of / and t', just as in the incoherent case. 

The expression for Jc [Eq. (5.13)] may be simplified in the same way. I t is seen to contain two factors such as 

XexpiulDxy-D^+Rjy-R/2) e x p C ^ ' - V ) ] ) . (6.8) 

On following the arguments leading to Eq. (6.5), we now find 

FT 

} J Jo 
) explik(w)(DKy+Rjy-D^-R/)2 e x p [ + ^ ( / ' - r ' ) ] . (6.9) 

The expression (5.13) contains also four scattering amplitudes, such as (6.6). Again putting together the pieces, 
we obtain 

/ , ,(V7/) = « ^-fdX(j)T-[d2(i)][ da>g(o>)[ da>'g(o>>) 
DtDfizJ JtsJ -iJo Jo 

X e x p ( ^ ( c o ) p x - ^ ) + a ) ( r - r O ] ) X e x p ( - C ^ ( ^ ) P x - ^ 0 + ^ ( ^ - r O ] ) 

Xfeo, ^o(X,i;co)^on^;co)^a^co0^o*(V*;coOgo). (6.10) 

The correlator counting rate may now be obtained by inserting the expressions (6.7) and (6.10) into Eq. (6.1). 
When feasible, it is ordinarily desirable to use a beam spectrum narrow enough that the co-dependence of the $'s 

may be neglected as was assumed in obtaining Eq. (4.34). For a crystalline target which has a large number of unit 
cells, this assumption is unwarranted. As is well known, in ordinary x-ray scattering, the frequency dependence of 
£F is important and must be considered explicitly; it gives rise to what is sometimes called a Lorentz factor. We 
shall return to this case in Sec. VIII, but for the time being neglect the effect. Then, 

5oQ,J) = 5oQ,J;u), (6.H) 

where co is an appropriate mean frequency of the beam. Now Eqs. (6.7) and (6.10) simplify considerably: 

/.for'; '/)= (rvV/AW)(l/S.)a . / * « / rf2(i)(g0j|EFoai)l2|ffo(V)l^o)a (6.12) 

/ . ( V ' ; l,t')=(e)(TWT
2/DiiD^)(l/X3yfdZ(j) fd2(t)\ f dagffo) exp(*[>(a>)F+<o(*'-/)]) 

X(go,3:o(X,y)3ro*(/J)JFo(^>o*(X^)go)ar. (6.13) 

Here Y=D\—Di is the quantity introduced in Eq. (5.26). For an experiment performed with two small sources, 
we see that Eq. (6.13) contains just the expression (2.3), multiplied by factors appropriate for determining the 
actual counting rate. 

I t is often permissible,26 as was described in connection with Eq. (4.35), to replace the wave function average of 
the product of ff's in Eqs. (6.12) and (6.13) by a product of averages of each £F. In this case we may introduce the 
amplitudes 

5(hf)=°{go, E A expHHwftDiy-D^Rjr-R^goU, (6.14) 
7=1 

into Eqs. (6.12) and (6.13) and drop the explicit average indicated by (go, • • *go)av. For the remaining discussion of 
this section, we shall assume that this may be done. 

26 When the scattering is predominantly elastic, for example, this may be done. 
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The correlator counting rate (6.1) is now 

C 8 = P W I E (<®{i) [dX(j)\(B(0))HHlJ)\2\H\i)\2+e[ dr'[ dt'L(r')L(tf\ 
x I DfDx*2*J J I Jo Jo 

X dug(a) exp(4>(co)F+a>(r ' - / ' ) ]) ^ ( ^ > * ( / j > ( W ^ M , (6.15) 

where B(0) is the dc bandpass characteristic, as deter
mined from Eq. (4.10). This equation should be com
pared with Eq. (5.31), obtained for incoherent scatter
ing. (The geometric simplification of taking Dr2D\~2 

= i?(r4 has not been made here.) When the approxima
tion described in connection with Eq. (6.14) cannot be 
made, 5Vs must be inserted in place of tf's in Eq. (6.15) 
and the entire right-hand side inserted within the 
(go,•••go)av average. 

Equation (6.15) might have been derived directly in 
terms of the target scattering amplitude without the 
elaborate discussion given in Sec. I l l of scattering from 
a composite system and without the introduction of the 
restrictive assumptions (3.3) and (3.4). 

To discuss a specific application of Eq. (6.15) let us 
assume that the circuits in the detectors are so chosen 
that 5(0) = 0. We shall also suppose that two "small" 
sources, Sa and Sa are used, as in Fig. 2 and that the 
detectors are "small." The assumption of "smallness" 
is interpreted to imply that the variation of the SF's 
over the surface of a given source of detector may be 
neglected, an assumption made also in obtaining Eq. 
(4.35). This must be reinvestigated for a large crystal
line target. (See Sec. VIII.) In this case, and using the 
notation introduced in Eqs. (2.3) and (4.35), we may 
rewrite Eq. (6.15) in the form 

C 2 = I [ | J ( M I 2 I ( F M I 2 + I $ F M I ^ ( W I 2 

+ $(\a)$*(l,a)$(l,a)$*(\a) 

+ $(\a)$*(l,a)$(l,a)$*(\a)'], (6.16) 
where 

M=t 
TD

2FT< „°° ~°° 
f &T'\ dt'L{T')L{t') 

Jo Jo 

X 
Jo 

) exp(*[*(«)F+»(T ' -* ' ) ] ) (6.17) 

The factor M is evidently of importance in determining 
the counting rate of the correlator. This will be de
scribed in Sec. VII. I t contains, among other things, 
the important information about the requisite geometric 
stability of sources and detectors. In terms of the filter 
response time, Ar r, defined in Sec. VII, we require only 
that Y<CAtr, which is of the order of feet. In the re
mainder of this section we shall suppose that M has 
been determined and that C2 has been measured for all 
combinations of detector and source angles, and shall 

discuss the use of this information for the determination 
of the phases. 

Let us first rewrite Eq. (6.14) in the form 

N 

$(l,a) = {go, E A expp&(w)( iL-A)-z 7 ]g 0 }av, (6.18) 
7=1 

with corresponding expressions for the other three 
amplitudes appearing in Eq. (6.16). In obtaining Eq. 
(6.18), we have assumed that the target dimensions are 
small compared with Ra, Di, etc. (see Fig. 3). Each 
of the four scattering amplitudes in Eq. (6.16) is seen 
to depend on the scattering geometry through its func
tional dependence on one of the vectors 

gia=Ra—Di 

g\a"=Ra — D\ 

(6.19) 

These vectors are not independent, but satisfy the 
single relation 

ila— gz« = g \o— gx« . ( 6 . 2 0 ) 

Now, since the SF's are complex, we may write 

£(/,*) = I $(!,a) I exp[>V(gja)], (6.21) 

etc., where the phases cp are evidently real. The magni
tudes I $(l,a) I may be determined directly from a con
ventional experiment (for example, by recording the 
average counting rate of the detector Di with only the 
source Sa present). Assuming that the | $1 's are known, 
we wish to determine the phases <p. 

Having measured the magnitudes | ̂  I and the cor
relator counting rate (6.16), we may deduce the quan
tity cosT, where 

T=<p(&a)- *(&«)+ <p(&Ka)-<p(£\a). (6.22) 

To determine the individual functions p, we first re
quire boundary conditions. A condition often assumed 
in x-ray scattering is that 

<p(0)=<p(gZa)lgia=0=0, (6.23) 

which requires in general that the / 7 ' s in Eq. (6.18) 
are real. In any event, we may always assume the con
dition (6.23) and the correct the final result for v? by 
adding to its deduced values the constant phase of 
Yiy=iNfy> f ° r forward scattering. We may, in addition 
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to the condition (6.23), assume that 

<p'(0) = d<p/dgi*\gl<r4>=0, (6.24) 

which merely specifies the origin of the coordinate 
system in the target.27 

Now, let us suppose that V [Eq. (6.22)] has been 
measured, modulo (2ir)y for a complete array of values 
for gia, iia, etc. The discrete values of gja will be 
represented by the sets of numbers gi(1), gi(2), • • •, etc. 
Similarly, the values of gia will be written as g2

(1), 
g2

(2)- • •, values of gx(« as g3
(1), g3 (2\ • • *, and values of 

gx,a as g4
(1), g4

(2), •••. The condition (6.20) implies 
that for any set v (v= 1, 2, • • •), 

Uiv)=£i(v)~&(v)+&iv). 

The measured values of V may then be labeled as 

r(gi("),g2(,'),g3(,')) 
L ^ (giW)- ^ ( g a

w ) + ^ ( g s ^ ) - *(&<'>) . (6.26) 

Let us next consider the difference of the T's for the 
two neighboring sets of values gi("+1), g2("\ gz(v) and 
gi(y), g2(v\ &v) 

5r(g1^,g2^,g3^>)^r(g1^1),g2c),g3^) 
- r ( g 1 ^ , g 2 ^ , g 3 ^ ) = C ^ ( g i ^ 1 > ) - ^ ( g 1 ^ ) ] 
~C^(gi ( J , + 1 )+g3 (" )-g2 (" ))-^(gi^+g3 ( ! ' )-g2w)] . 

(6.27) 

If 5T is now determined for an array of g's, such that 
g i ^ + g s 0 0 - ^ 0 0 and gi ("+ 1 )+g 3

( , , ) -g2 ( , ; ) are each held 
constant, we may deduce the quantity, 

<p(ii™)-<p(iiiw))=t<p(>>), (6.28) 

to within a constant. This set of difference equations, 
and the boundary conditions (6.23) and (6.24), permit 
the determination of the phase <p (g) as a function of g.28 

VII. COUNTING RATE AND FLUCTUATIONS 

We have given expressions for the mean correlator 
counting rate in Sees. V and VI. The mean counting 
rate will of course be obtained only in the limit of a 
very long period of observation. For the practical 
design of an experiment it is necessary to estimate the 
fluctuations about the mean for an experiment of finite 
duration. 

Let us first express the correlator counting rate C2 

[Eqs. (6.16) and (6.17)] in terms of several parameters 
characteristic of the experiment. The energy spread 
of the incident beam will be written as hA<joB, where 

AuB J 
<&&(«)?. (7.1) 

27 That is, we may always add a constant vector y to all the 
zjs in Eq. (6.18), so chosen that condition (6.24) is valid. 

28 For application to scattering by a crystal our discussion has 
been somewhat schematic. We hope to return to a more detailed 
description in a later publication. 

Similarly, the response time of the counters Arr is 
defined by 

2TT/A' 

- / 
do}\B{w)\\ (7.2) 

where B(cc) is denned by Eq. (4.10). We shall assume 
that 

ArrAcojB»l (7.3) 

(although it would be desirable, if feasible, to have 
ATVACO^^I). Then, using the condition (7.3) and Eq. 
(4.10), we have 

-oo „oo 

(6.25) f dr' f dt'L(r')L{t' 
Jo Jo 

/ dugiw. ) exp0pF+co( r ' -O] ) 

>fdp\lHj>)\%l> dp\B{p)\* <M*(«)|*=-
2x 

ArrAcOB 
-• (7.4) 

Therefore, according to Eq. (6.16), assuming "small" 
detector and sources, 

0 T* 2 77 2 

ArrAaiB Di2Dx
2 

+ | ^ (M| 2 | ^M| 2 + | (F (X 5 a ) | 2 | ^ ( / , a ) | 2 ] . (7.5) 

To estimate the fluctuations in C2, we shall continue 
to suppose that 

/ 
<?TL(T) = 0 , (7.6) 

which resulted in the elimination of the Jn term from 
C2. We shall next drop the ensemble average, denoted 
by "(• • ->av" from Eqs. (5.12) and (5.13). The'resulting 
quantities, 

Jn=Jn\^,T ;l,t ; h' ' 'tn'j t) 

Jc— Jc\^,T \lyt ; t\- ' -tn'j t) , 
(7.7) 

therefore depend parametrically on the number n of 
detected particles and the emission times t\ • • • tn. If 
the experiment is conducted for a time T, the mean 
counting rate for a pure state | <£) is 

00 . 00 

C2(tv"tn;T) = —j dtl dr' f dt'L(T')L(t'[ 
TJ 0 J 0 J 0 

) 

+ / * ( V / ; V ; * i - - - ' « ; 0 ] , (7-8) 

where the effect on counter size will be assumed to be 
absorbed in the factor TD, as in Eq. (7.5). The mean 
counting rate (7.5) is the ensemble average of (7.8), 
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the average being made over the emission times tv "tn 

and the number of counted particles n, 
The fluctuations in Ci may be estimated from the 

quantity 
bC^{[C*{h. • -tn; r ) ] 2 ) a v - (C2)

2. (7.9) 

Evaluation of this expression, assuming that the //s 
0 '=1 , 2, • • -n) are independent random variables uni
formly distributed over the interval 0<tj<T, is 
straightforward but tedious. The leading term in (7.9) 
is determined by the fluctuation in JnXJn—that is, 
the fluctuations getting past the dc filter [condition 
(7.6)]. 

Keeping only the JnXJn terms, then, we find 

SC2
2= (M „)2{[| SFM l2+ff(/,«) I2] 

X[IS(\,a)JH-|ff(V)l2]}2 , (7.10) 

where 

T r 
Dflh1 (Mn)

2~rD*— / &, | # («) 14 

2TTJ 

/ £ fdkdldk'dl'l— | a'{k) 12T— | a'(I) 12~| 

x[-^la«(*')|»][—|a«(01»]^ • (7-11) 

In obtaining this expression we have used the condi
tion (7.3). 

To give (7.11) a simple qualitative interpretation we 
shall replace 

<s!/4 vwi'll) 
by 

1 

n 

where n is the average number of particles counted 
during the interval T. Then the expression (7.11) 
becomes 

(Mny 
T rTi>W-i2 

' • = -

2wn2L 

1V/VY r 

Di2Dx
2} J 

da>\B(a>)\4. (7.12) 

Also, using Eq. (7.2), we set 

Cda> | J 5 ( « ) ^ ( 2 T / A T r ) , / < (7.13) 

as an "order of magnitude" relation. 
Finally, on combining Eqs. (7.5), (7.10), (7.12), and 

(7.13), we obtain the "signal-to-noise" ratio for our 
experiment as 

(dCflW/C*** (Aco5/n) (TArr)112, (7.14) 

ignoring the coefficients involving the scattering ampli
tude factors. Since ft is proportional to T, the ratio 
(7.14) decreases as T~1/2, as might be expected. 

VIII. DISCUSSION OF AN EXPERIMENT 

In this section we make a preliminary, though rather 
rudimentary effort to relate the formalism that has 
been developed to the real word. To be more specific, 
we direct our attention to crystalline substances. We 
assume that we are dealing with an ideal crystal. Some 
problems involved in extending the theory to mosaic 
crystals have not been solved, though we hope to return 
to them elsewhere. This limitation alone restricts our 
proposed experiment to excellent laboratory crystals, 
which will serve only to demonstrate feasibility of the 
techniques. Further, we have ignored primary extinc
tion ; this is a particularly poor approximation for ideal 
crystals since the absorption of the primary wave is 
very great for any allowed scattering geometry. To 
include the effect, we would have to superimpose on 
our already rather involved analysis the full structure 
of the dynamical theory of x-ray scattering. There 
seem to be no difficulties in principle, but we choose 
not to go into the matter here. Instead, we simulate the 
effects of extinction by assuming that our crystal is 
thin, and by adjusting its thickness to absorb the thick
ness of the absorption layer due to extinction in the 
crystal. Thus the angular and frequency width of the 
scattered radiation will be about those to be expected 
from honest extinction. 

We turn to the experimental situation illustrated in 
Fig. 3, with two sources and two detectors. The cor
relator counting rate has been discussed in Sec. VI and 
we refer in particular to Eq. (6.15) [with J3(0) = 0, to 
cut out the uninteresting dc component]. Actually for 
our present purpose, it is useful to restore the frequency 
dependence of the scattering amplitudes, as in Eq. 
(6.10), so that (6.15) becomes 

c2=er
2iVEE 

x l Di2D: 

/ dL{i) d2(j) [ dr' [ dtfL{T,)L{tt) [ dcog(a>) [ da>'g(a>') 
3x%2-/ J Jo Jo Jo Jo 

Xexp(ik(u)Y+iu(Tf-tO)exp(-ik(a>OY-i^ (8.1) 

= eP /V E E [dS® fdX(j) ( ^g(co) f da>'g(a>>) 
x i DfDx*2*J J Jo Jo 

Xexp(iYlk(a>)-k(a>')l) I Bfa'-u) \2H\M^(U^)H^^0^(\W) • (8.2) 
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The last expression follows from Eq. (4.10). We shall 
not, at the moment, do the integrals over the sources; 
it is, however, worth bearing in mind that we are think
ing of two small sources and that these integrals must 
be done. In contrast to the treatment described in Sec. 
VI, we cannot, in the real crystalline problem, disregard 
the very strong angular dependence of the ^'s. Further, 
it should be noted that the interesting phase informa
tion is obtained only when dE(i) and d2{j) are on 
different sources [as in the last two terms of Eq. (6.16)]. 

Let us begin a discussion of the frequency ranges o) 

We have also omitted from Eq. (7.4) the factor 
exp(iY[k(o)) — k(a)')~})' The resolving time TO is unlikely 
to be smaller than about 10~9 sec so that the exponent 
will be of the order of Y(dk/da})/To~Y/vTo, where v is 
the group velocity of the medium involved, in our case, 
the velocity of light. If Y can be controlled to within a 
few centimeters, which should not be difficult, the ex
ponent can be made very small. As an incidental and 
irrelevant consequence, we have set Di=D\; it is 
trivial to remove this restriction. 

It is in consideration of the scattering amplitudes £F 
that we encounter the problems associated with the 
dynamical theory of scattering. The geometrical con
straints implied by Eq. (8.4) are associated with the 
fact that all four Ô s must be nonvanishing at the same 
frequency (at least to within the bandwidths of the 
filters). It is easy to see that if the crystal were infinite 
in extent, this would be essentially impossible, since 
scattering would then occur only for changes in mo
mentum precisely equal to a reciprocal lattice vector 
of the crystal. For the first two amplitudes in Eq. (8.4) 
corresponding to the source point j this is not a problem, 
as is shown in Fig. 6. There ki is the incident photon 
wave-number vector and we are required by the Bragg 
condition to add it to a reciprocal lattice vector, so 

C \ l FIG. 6. Construc-
.—J pi t i o n t 0 illustrate the 
U / *'' J illumination of two 

C ,'' .1 Bragg reflections at 
/ / I once. 

SPHERE OF 

REFLECTION 

and <J which contribute appreciably to C2 in Eq. (8.2). 
For the x-ray case, the most restrictive factor will be 
\B{oir—co) |2, since it will be difficult to design a filter 
network as broad as the width, even after Bragg re
flection, of an x-ray line. If this is the case, we may 
define a resolving time of the filter as in Eq. (7.2) by 

9 r°° 
—==/ dv\B(v)\* (8.3) 
Arr JO 

and obtain 

that the sum of the two has the same magnitude as ki. 
This is achieved by rotating the crystal (represented by 
its reciprocal lattice) around the tip of ki, until the 
terminus of the reciprocal lattice vector gi lies on the 
sphere of reflection, as shown. This is, of course, the 
standard Bragg construction. There is one further de
gree of freedom to be exploited; namely a rotation of 
the crystal about the axis represented by gi. In this 
way, a second reciprocal lattice vector g2 may also be 
made to lie on the reflection sphere. Thus, unless the 
g's are too large, it is generally possible to achieve two 
reflections at the same time, at any frequency. Needless 
to say, the geometrical constraint is precise, and there
fore unachievable. It is only to the extent that reflected 
lines have a finite width, for a finite crystal, that the 
experiment is possible. 

There is no simple cure to this geometrical problem 
analogous to the crystal rotation technique of ordinary 
x-ray diffraction. To put any given lattice vector gi 
on the sphere of reflection, it is customary to rotate the 
crystal about some axis, allowing gi to pass through the 
sphere from time to time. Each time it does, some 
photons are scattered and the accumulation of these 
produces the spot. The Lorentz factor measures, in 
effect the rate at which the terminus of gi goes through 
the sphere. Although in our case, also, gi and g2 could 
be made to go through the sphere by rotation, there is 
no way to assure that they go through at the same time, 
which is what we need for our experiment. There seems 
to be no alternative to painstaking alignment. If the 
angular width of the scattering from a good crystal is 
a few seconds of arc (due to primary extinction), then 
the alignment will have to be that good to achieve the 
required conditions. A 0.1 mm collimator at 10 m repre
sents 2 sec of arc. 

Consider now the remaining two Ŝ s in Eq. (8.4) and 
ask whether they can be made nonvanishing with the 
now fully determined geometry. The only free variable 
is the direction of illumination from the second source, 
k2. We require that it make two Bragg reflections which 
will land on the detectors placed at the termini of 
ki+gi and ki+g2. Thus, both ki+gi—k2 and kx 

2T€T2FT
2 e r r 

c 2 = I I dz({) ds(j) &oIg(«)12^(X,i,«)g*ay,«)iFaf/o)3*(X,*,co). (8.4) 
Arr2s

2£>4 x / J J Jo 
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+ fe—1*2 must be reciprocal lattice vectors, say g3 and 
g4. Since g4— g3= gi— g2, which by virtue of the group 
property is itself a reciprocal lattice vector we see that 
it is sufficient if either one fulfills the requirement. I t 
follows that k2—kx must also be a vector in the re
ciprocal lattice of the crystal, in its given orientation. 
Since k2 must have the same magnitude as ki, and we 
have just laboriously given ki its two Bragg reflections, 
this can only mean that k2 is either k i + g x or k i + g 2 . 
In that case, one of the detectors lies in the forward 
direction for the second source, and no real scattering 
has occurred. I t is not immediately clear that informa
tion cannot be obtained from this configuration, but 
the experimental problems are severe with a detector in 
the direct beam. We abandon this arrangement for the 
present. 

The only other possibility is that k2— kx is a recipro
cal lattice vector other than gi or g2, which in turn 
implies that three Bragg reflections must be possible 
for the first source. This does not in general happen 
because we have exhausted all of our geometrical de
grees of freedom in achieving two scatterings. However, 
there remains one parameter, the frequency ~ | ki | . 

If in Fig. 6, we consider the origin of gi and g2, the 
termini of gi and g2, and the terminus of some other 
reciprocal lattice vector g3 measured from the same 
origin, these four points determine a possible sphere of 
reflection. The vector ki from the center of the sphere 
to the origin of gi, g2, and g3 is a possible source direction 
for the illumination of k i + gi, and k i+g 2 . By our con
struction, k i + g3 will be a second, equally good, source 
direction. Thus all of our experimental requirements are 
fulfilled, but at the rather fearful price of having to 
work with a small rigidly determined part of the con
tinuous spectrum; the crystal itself serves as the 
monochromator. 

We shall not give a numerical estimate of the cor
relator counting rate (8.4). Nor shall we discuss the 
problem of experimental achievement of the required 
remarkable conjunction of circumstances. These ques
tions will be taken up in a separate publication. 

There are evidently a large variety of possible appli
cations of the general theory presented here. For ex
ample, it may well be that electron scattering, rather 
than x-ray scattering, will be a preferable technique. 
The final calculations will have to be performed with a 
specific experiment in mind and not being experts in 
this field we may well be evaluating an experimentally 
uninteresting case. 

APPENDIX 

The question was raised in Sec. I I of deducing the 
scattering amplitude ^F(Ak) from a measurement of its 
magnitude | $(Ak) | . I t was remarked that by a process 
of analytic continuation a discrete set of ^(Ak^s may 
be obtained, all having the same magnitude. 

We shall discuss this problem only for x-ray scatter

ing, limiting ourselves to the case that the scattering 
amplitudes for all electrons are equal.29 Then the x-ray 
form factor is [see Eq. (4.35)] 

• / • 
n(g)= hPzptoe*'*, (Al) 

where the scattering amplitudes /« have been factored 
out, 

g=S(2?y-A), (A2) 
and p(z) is the electron density in the target. [For the 
case of scattering from a crystal, we interpret p(z) to 
be the electron density within the unit cell.] 

Let us now write 

u^z-e (A3) 

z=^y-\-eu. 
Then, defining 

k(u) = d2yp(z); 

we have 

J —oo 

duk{u)eieu, 

(A4) 

(A5) 

which (of course) depends parametrically on e. We 
may also suppose that 

k(u) = 0, except for 0 < u <L, (A6) 

and observe that the real function k (u) is bounded and 
non-negative; that is, 

k(u)>0. (A7) 

Therefore, Eq. (A5) is equivalent to 

v(g)= I duk(u)eidU= duk(u)eigu. (A8) = / duk(u)eiQU= I 
Jo Jo 

I t is apparent from Eq. (A8) that 17(g) is analytic, 
except for Im(g)= — <*>, in the entire complex g plane. 
For Im(g) —-» — 00, 

h ( g ) i < 0 ( ^ l I m ^ i ) . 

Thus, rj(g) is an integral function of order one.30 

A coordinate translation 

(A9) 

x—u—L (A10) 
permits us to define 

riLia) = e~iLav(g)= / dxk'(x)eixg, (Al l ) 
J —00 

where kf(x)^k(u), is an integral function of order one, 
analytic except at Im(g) = + <x>. 

29 This assumption is not essential for our argument, but simpli
fies somewhat the discussion. 

30 See E. C. Titchmarsh, Theory of Functions (Oxford Uni
versity Press, Oxford, 1939), 2nd ed., Chap. VIII. 



2786 G O L D B E R G E R , L E W I S , A N D W A T S O N 

The conventional scattering experiment [see Eq. 
(4.35)] provides a measurement of \rj(g)\ for real g. 
To deduce the electron density p(z), one must know 
77(g) (for real g) as a function of the parameter e. Dis
persion relations for the real and imaginary parts of 77 
may be deduced in various forms from Eq. (A8). A 
typical one of such relations is 

2g r dg'Vr(g>) 

*<*)—r 7 ^ - ? (A12) 

* Jo (gr-g2 

where rjr and t\i are the real and imaginary parts of 
77(g) (for real g), respectively. One might contemplate 
combining the measured value of 

with Eq. (A12) to deduce r\r and rji separately as func
tions of g. This would provide, then, a solution to the 
"phase problem," or the problem of deducing 77(g) 
from |i?(g)|. As we shall now show, the solutions so 
obtained are unfortunately not unique. 

Let us suppose that the zeros of 77(g) [Eq. (A8)] 
occur at the values of gi, g2*,# of g so y(gn) = 0 for 
n=l, 2, • • •. Then 77(g) has the representation31 

n(g)= ce°°n [ ( 1 - (g/gn))e""l, (A13) 
n 

where c and a are constants and the product extends 
over all zeros gn of 77. We first observe that 

77(0) = cisreal. (A14) 

We see, next, that Eq. (A8) implies that 

u*(-g*)=fl(g). (A15) 

From this relation and Eq. (A13) it follows that the 
zeros gn either lie on the imaginary axis so gn— ± i | g n | , 
or they are paired so that 

gn=-gn* (A16) 

for a suitable pairing of indices n and n. Equation 
(A15) also implies that the constant a is pure imaginary, 
so a=id with d real 

„(g)= « « » n C ( l - (g/g»))e«»l. (A17) 
n 

To study the uniqueness of 77(g), let us suppose that 
N(g) is a second function, satisfying the conditions that 

\N(g)\ = \ri(g)\, greal, (A18) 
and that 

N(g)= f duK(uy°u, (A19) 
Jo 

where K(u)>0 and is bounded. Evidently, if an N(g) 

31 See Ref. 30, Chap. VTIL 

7̂ 77(g) can be found, the solution to the phase problem 
(without other conditions) is not unique. 

Let us suppose that the zeros of N(g) are at the points 
g=Gi, G2, • • •. Then N has the representation, analo
gous to (A17), 

N(g) = ceiD° I I C(l - (g/Gi))e^q, (A20) 
I 

where the condition (A18) implies that the constant c 
in Eqs. (A17) and (A20) is the same. 

Consider now the ratio 

U(g)=e^ = N(g)Mg) 

= e«D-»°imi-(i/Gl))e°<Gq/ 

n C d - C g / g n ) ) ^ " - ] . (A21) 

It follows from Eq. (A18) that |£/(g)| = l, or <p(g) is 
real, for real g. Therefore, the function 

F(g)^U*(g*)-U->(g) 

vanishes identically for g real. Since F(g) = 0 on the 
real g axis, we conclude that F(g) = 0 everywhere 
(except at the singularities of F) in the complex g 
plane. From this we conclude that 

U*(g*) = l/U(g). (A22) 

Substitution of (A21) into both sides of (A22) gives 

?[H?H n[0-£H 
= . (A23) 

Now, U(g) has zeros at all (and only at) Gis and 
poles at all (and only at) gn'$ (except for those GVs 
which coincide with g's).32 Similarly, U*(g*) has zeros 
(poles) at the Gi*(gn*). On the other hand, U~1(g) has 
zeros [poles at gn(Gi)2- It follows, then, from Eq. (A23) 
that all gnys and Gis may be paired and placed in either 
of two classes: 

Class I : gn^Gi (with appropriate pairing of indices) 

Class I I : gn^ Gi* (with appropriate pairing of indices). 
(A24) 

Expressed in words, the functions N(g) and 77(g) may 
differ only by a reflection of some of their zero's with 
respect to the real g axis. We shall see below that the 
number of gn's not on the real axis may be assumed to 
be finite. Thus, the most general form of a function 

32 As a practical matter, we may assume that no two gn's, or 
two Gi's, are equal. Were it otherwise, we could imagine a small, 
unobservable change in k(u), or K(u)y to shift the zeros apart. 
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N(g), satisfying (A18), is 

(g-gj) ' 

(A25) 

where the product runs over any given set of the zeros 
gj of 7]. If K(u) and k(u) are both to be real, associated 
pairs [Eq. (A16)] of zeros must be reflected together. 

The inherent ambiguity in the phase problem is ex
pressed by Eqs. (A24) and (A25).33 That is, there are 
a finite, discrete set of functions N(g), satisfying the 
condition that |iV(g)| = |*?(g)| for g real. These func
tions differ by a reflection of zeros about the real g 
axis.34 

To give a more explicit discussion, let us suppose 
that an attempt is made to represent k{u) by a, finite 
number of terms in a Fourier series 

«o r lirnu 2irnWl 
k(u)=J2\ #rcsin h^wcos , 0<u<L. (A26) 

n=oL L L J 

where 

Then, from Eq. (A8), we have 

^(g)=\Kg)[^L-i]A\ 
W0 Qn 

Hg)= E — — — - , 
n=-no g— {2irn/L) 

Qn=bn+ian O > 0 ) , 

Qo=b0. 

and 

(A27) 

(A28) 

(A29) 

Let the zero's of ^(g) be at g=gi, g%- • -gP (p finite). 
The remaining zeros of i](g) lie on the real axis at 
g=2im/L, n an integer and | » | <»o- The most general 
form of U(g) [Eq. (A2S)] is then 

l(g-gj*)/(g-to)JL(g+gj)/(g+gi*)l, (A30) 

where product runs over a selected set of those gv - -gP 

33 I t is hoped to return in a later publication to a discussion of 
further conditions to be imposed on the ambiguity in rj. 

34 The reality condition on k{u), expressed by Eq. (A16), im
plies that the zeros must be reflected in pairs, except for those 
which are purely imaginary. 

FIG. 7. The contour used 
in Eq. (A31). V 

g Plane 

which are not on the real axis. [For any gj on the imagi
nary axis, only one factor should appear in Eq. (A30).] 
The function K{u) is [for 0<u<L~] 

1 r+0° 
K(u)=—I dgN{g)e~igu 

27r7_oo 

- — [ • dgU(g)Hg)e-i0U. (A31) 

Here c is a contour displaced slightly above the real 
axis at the points g=2irn/L(\n\ <nQ) and deformed in 
such a manner that all poles of U(g) lie above the con
tour, as illustrated in Fig. 7. 

Evaluation of Eq. (A31) gives 

no /2irn\ 
K(u)= £ iQnU[ \e-*™iL. (A32) 

On writing 

U{2m/L)=e-i(Pn, <p-n= - <Pn, (A33) 

and using Eq. (A29), we find 

K (u) = X Lan sin (2irnu/L-{- <pn) 
n=0 

+ bn cos (2irnu/L+ $>„)], (A34) 

which should be compared with Eq. (A26). 
The inherent ambiguity in the "phase problem" is 

expressed by Eqs. (A26) and (A34). I t must be noted, 
however, that the phases <pn in Eq. (A34) are not 
arbitrary, but are members of a discrete set of phases 
which are uniquely determined by the function k(u). 


